Adaptive unsupervised separation of discrete sources
نویسندگان
چکیده
This paper treats source separation with the help of contrast functions and proposes corresponding adaptive implementations. Its major contributions are two-fold: (i) it proposes a new contrast which can be evaluated without pre-whitening the signals, provided all have unitary power. Its adaptive maximization involves an output AGC for each source recovery and performs as well as separation with pre-whitened signals; (ii) in case of sources with discrete alphabet, an intermediate contrast is proposed which takes additional advantage of the alphabet knowledge. The improvement to source separation is significant for correlated signals, but for adaptively pre-whitened separation, the quality of whitening conditions the improvement. ( 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملBlind Signal Deconvolution by Spatio Temporal Decorrelation and Demixing
In this paper we present a simple efficient local unsupervised learning algorithm for on-line adaptive multichannel blind deconvolution and separation of i.i.d. sources. Under mild conditions, there exits a stable inverse system so that the source signals can be exactly recovered from their convolutive mixtures. Based on the existence of the inverse filter, we construct a two-stage neural netwo...
متن کاملAdaptive Group Sparsity for Non-Negative Matrix Factorization with Application to Unsupervised Source Separation
Non-negative matrix factorization (NMF) is an appealing technique for many audio applications, such as automatic music transcription, source separation and speech enhancement. Sparsity constraints are commonly used on the NMF model to discover a small number of dominant patterns. Recently, group sparsity has been proposed for NMF based methods, in which basis vectors belonging to a same group a...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 73 شماره
صفحات -
تاریخ انتشار 1999